Generalized exponents of non-primitive graphs

نویسنده

  • Jia-Yu Shao
چکیده

The exponent of a primitive digraph is the smallest integer k such that for each ordered pair of (not necessarily distinct) vertices x and y there is a walk of length k from x to y. As a generalization of exponent, Brualdi and Liu (Linear Algebra Appl. 14 (1990) 483499) introduced three types of generalized exponents for primitive digraphs in 1990. In this Paper we extend their definitions of generalized exponents from primitive digraphs to general digraphs which are not necessarily primitive. We give necessary and sufficient conditions for the finiteness of these generalized exponents for graphs (undirected, corresponding to symmetric digraphs) and completely determine the largest finite values and the exponent sets of generalized exponents for the class of non-primitive graphs of Order n, the class of connected bipartite graphs of Order n and the class of trees of Order n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Generalized Exponents of Ministrong Digraphs

We obtain upper bounds for the upper generalized exponents of digraphs in the class of ministrong digraphs and in the class of non-primitive ministrong digraphs, characterize the corresponding extremal digraphs, and discuss the numbers attainable as upper generalized exponents of ministrong digraphs.

متن کامل

Generalized Exponents of Primitive Symmetric Digraphs

A strongly connected digraph D of order n is primitive (aperiodic) provided the greatest common divisor of its directed cycle lengths equals 1. For such a digraph there is a minimum integer t, called the exponent of D, such that given any ordered pair of vertices x and y there is a directed walk from x to y of length t. The exponent of D is the largest of n ‘generalized exponents’ that may be a...

متن کامل

General Hardy-Type Inequalities with Non-conjugate Exponents

We derive whole series of new integral inequalities of the Hardy-type, with non-conjugate exponents. First, we prove and discuss two equivalent general inequa-li-ties of such type, as well as their corresponding reverse inequalities. General results are then applied to special Hardy-type kernel and power weights. Also, some estimates of weight functions and constant factors are obtained. ...

متن کامل

$Z_k$-Magic Labeling of Some Families of Graphs

For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic}  if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$  defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$  the group of integers modulo $k...

متن کامل

On the diameter of the Kronecker product graph

Let and be two undirected nontrivial graphs. The Kronecker product of and denoted by with vertex set , two vertices and are adjacent if and only if and . This paper presents a formula for computing the diameter of by means of the diameters and primitive exponents of factor graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003